terça-feira, 11 de outubro de 2011

Herança e sexo


Em condições normais, qualquer célula diplóide humana contém 23 pares de cromossomos homólogos, isto é, 2n= 46. Desses cromossomos, 44 são autossomos e 2 são os cromossomos sexuais também conhecidos como heterossomos.

Autossomos e heterossomos
Os cromossomos autossômicos são os relacionados às características comuns aos dois sexos, enquanto os sexuais são os responsáveis pelas características próprias de cada sexo. A formação de órgãos somáticos, tais como fígado, baço, o estômago e outros, deve-se a genes localizados nos autossomos, visto que esses órgãos existem nos dois sexos. O conjunto haplóide de autossomos de uma célula é representado pela letra A. Por outro lado, a formação dos órgãos reprodutores, testículos e ovários, característicos de cada sexo, é condicionada por genes localizados nos cromossomos sexuais e são representados, de modo geral, por X e Y. O cromossomo Y é exclusivo do sexo masculino. O cromossomo X existe na mulher em dose dupla, enquanto no homem ele se encontra em dose simples.

Microscopia Eletrônica do cromossomo X e Y. Compare a diferença de tamanho de cada cromossomo.

Os cromossomos sexuais
O cromossomo Y é mais curto e possui menos genes que o cromossomo X, além de conter uma porção encurtada, em que existem genes exclusivos do sexo masculino. Observe na figura abaixo que uma parte do cromossomo X não possui alelos em Y, isto é, entre os dois cromossomos há uma região não-homóloga.



Determinação genética do sexo

O sistema XY
Em algumas espécies animais, incluindo a humana, a constituição genética dos indivíduos do sexo masculino é representada por 2AXY e a dos gametas por eles produzidos, AX e AY; na fêmea, cuja constituição genética é indicada por 2AXX, produzem-se apenas gametas AX.
No homem a constituição genética é representada por 44XY e a dos gametas por ele produzidos, 22X e22Y; na mulher 44XX e os gametas, 22X. Indivíduos que forma só um tipo de gameta, quanto aos cromossomos sexuais, são denominados homogaméticos. Os que produzem dois tipo são chamados de heterogaméticos. Na espécie humana, o sexo feminino é homogamético, enquanto o sexo masculino é heterogamético.




Mecanismo de compensação de dose


Em 1949, o pesquisador inglês Murray Barr descobriu que há uma diferença entre os núcleos interfásicos das células masculinas e femininas: na periferia dos núcleos das células femininas dos mamíferos existe uma massa de cromatina que não existe nas células masculinas. Essa cromatina possibilita identificar o sexo celular dos indivíduos pelo simples exame dos núcleos interfásicos: a ela dá-se o nome decromatina sexual ou corpúsculo de Barr.
A partir da década de 1960, evidências permitiram que a pesquisadora inglesa Mary Lyon levantasse a hipótese de que cada corpúsculo de Barr forre um cromossomo X que, na célula interfásica, se espirala e se torna inativo, dessa forma esse corpúsculo cora-se mais intensamente que todos os demais cromossomos, que se encontram ativos e na forma desespiralada de fios de cromatina.
Segundo a hipótese de Lyon, a inativação atinge ao acaso qualquer um dos dois cromossomos X da mulher, seja o proveniente do espermatozóide ou do óvulo dos progenitores. Alguns autores acreditam que a inativação de um cromossomo X da mulher seria uma forma de igualar a quantidade de genes nos dois sexos. A esse mecanismo chamam de compensação de dose. Como a inativação ocorre ao acaso e em uma fase do desenvolvimento na qual o número de células é relativamente pequeno, é de se esperar que metade das células de uma mulher tenha ativo o X de origem paterna, enquanto que a outra metade tenha o X de origem materna em funcionamento. Por isso, diz-se que as mulheres são “mosaicos”, pois – quanto aos cromossomos sexuais apresentam dois tipos de células.
A determinação do sexo nuclear (presença do corpúsculo de Barr) tem sido utilizada em jogos olímpicos, quando há dúvidas quanto ao sexo do indivíduo.
 
Compare quanto a presença do corpúsculo de Barr nas células masculinas (acima) com a células femininas (abaixo).


O sistema X0
Em algumas espécies, principalmente em insetos, o macho não tem o cromossomo Y, somente o X; a fêmea continua portadora do par cromossômico sexual X. Pela ausência do cromossomo sexual Y, chamamos a esse sistema de sistema X0. As fêmeas são representadas por 2A + XX (homogaméticas) e os machos 2A + X0 (heterogaméticos).

O Sistema ZW
Em muitas aves (inclusive os nossos conhecidos galos e galinhas), borboletas e alguns peixes, a composição cromossômica do sexo é oposta à que acabamos de estudar: o sexo homogamético é o masculino, enquanto as fêmeas são heterogaméticas. Também a simbologia utilizada, nesse caso, para não causar confusão com o sistema XY, é diferente: os cromossomos sexuais dos machos são representados por ZZ, enquanto nas fêmeas os cromossomos sexuais são representados por ZW.

Abelhas e Partenogênese
Nas abelhas, a determinação sexual difere acentuadamente da que até agora foi estudada. Nesses insetos, o sexo não depende da presença de cromossomos sexuais, e sim da ploidia. Assim, os machos (zangões) são sempre haplóides, enquanto as fêmeas são diplóides. A rainha é a única fêmea fértil da colméia, e por meiose, produz centenas de óvulos, muitos dos quais serão fecundados. Óvulos fecundados originam zigotos que se desenvolvem em fêmeas.
Se na fase larval, essas fêmeas receberem uma alimentação especial, trasnformar-se-ão em novas rainhas. Caso contrário, se desenvolverão em operárias, que são estéreis.
 
Os óvulos não fecundados desenvolvem-se por mitose em machos haplóides. Esse processo é chamado de partenogênese (do grego, partheno = virgem, gênesis = origem), ou seja, é considerado um processo de desenvolvimento de óvulos não-fertilizados em indivíduos adultos haplóides.


Determinação do sexo em plantas
Grande parte das plantas produz flores hermafroditas, que contém tanto estruturas reprodutoras masculinas como femininas. Plantas desse tipo são monóicas (do grego mono, um, e oikos, casa), termo que significa “uma casa para dois sexos”.  Outras espécies têm sexos separados, com plantas que produzem flores masculinas e plantas que produzem flores femininas. Essas espécies são denominadasdióicas (do grego di, duas, e oikos, casa), termo que significa “duas casas, uma para cada sexo”.
Nas plantas dióicas os sexos são determinados de forma semelhante a dos animais. O espinafre e o cânhamo, por exemplo, têm sistema XY de determinação do sexo; já o morando segue o sistema ZW.

Organismos que não tem sistema de determinação do sexo
Os organismos monóicos (hermafroditas) não apresentam qualquer sistema de determinação cromossômica ou genética de sexo. Todos os indivíduos da espécie têm, basicamente, o mesmo cariótipo. Esse é o caso da maioria das plantas e de animais como minhocas, caramujos e caracóis.

Herança de genes localizados no cromossomo X

Herança ligada ao sexo em drosófila
Em 1910, Morgan estudou uma macho de drosófila portador de olho branco, originado de uma mutação do olho selvagem, que tem cor marrom avermelhada. O cruzamento desse macho de olho branco (white) com fêmeas de olho selvagem originou, na geração F1, apenas descendentes de olho selvagem. 
O cruzamento de machos e fêmeas da geração F1 resultou em uma geração F2 constituída por fêmeas de olho selvagem, machos de olho selavagem e machos de olho branco. A proporção de moscas de olho selvagem e moscas de olho branco foi de aproximadamente 3:1, o que permitiu concluir que a característica olho branco era hereditária e recessiva.
Morgan voltou sua atenção para o fato de não ter nascido nenhuma fêmea de olho branco na geração F2. Isso indicava que a característica em questão tinha alguma relação com o sexo dos indivíduos.  Na sequência dos experimentos, Morgan cruzou machos de olho branco com as suas próprias filhas, que eram heterozigotas em relação à cor do olho. Desse cruzamento surgiram fêmeas e machos de olho selvagem, e fêmeas e machos de olho branco, na proporção 1:1:1:1. Esse resultado mostrou que o caráter olho branco podia aparecer também nas fêmeas.
Como explicar, então a ausência de fêmeas de olho branco na geração F2 do primeiro cruzamento?

Em 1911, Morgan concluiu que os resultados dos cruzamentos envolvendo o loco da cor do olho, em drosófila, podiam ser explicados admitindo-se que ele estivesse localizado no cromossomo X. O macho de olho branco original teria fornecido seu cromossomo X, portador do alelo recessivo mutante w (Xw), a todas as filhas que receberam seu outro cromossomo X das mães, portadoras do alelo selvagem W (XW). As fêmeas da geração F1 seriam, portanto, heterozigotas XWXw.  Já os machos de F1 receberam o cromossomo X das fêmeas selvagens puras (XW). Sua constituição gênica seria, portanto XWY.
A hipótese de Morgan foi confirmada pela análise de outros genes de drosófila, cuja herança seguia o mesmo padrão. Além disso, permitiu também explicar a herança de genes relacionados com o sexo em outras espécies.  Os genes localizados no cromossomo X, que não têm alelo correspondente no cromossomo Y seguem o que se denomina herança ligada ao sexo ou herança ligada ao X.

Herança ligada ao sexo


Habitualmente, classificam-se os casos de herança relacionada com o sexo de acordo com a posição ocupada pelos genes, nos cromossomos sexuais. Para tanto, vamos dividi-los em regiões:
A porção homóloga do cromossomo X possui genes que têm correspondência com os genes daporção homóloga do cromossomo Y. Portanto, há genes alelos entre X e Y, nessas regiões. Os genes da porção heteróloga do cromossomo X não encontram correspondência com os genes da porção heteróloga do cromossomo Y. Logo, não há genes alelos nessas regiões, quando um cromossomo X se emparelha com um cromossomo Y.
Herança ligada ao sexo é aquela determinada por genes localizados na região heteróloga do cromossomo X. Como as mulheres possuem dois cromossomos X, elas têm duas dessas regiões. Já os homens, como possuem apenas um cromossomo X (pois são XY), têm apenas um de cada gene. Um gene recessivo presente no cromossomo X de um homem irá se manifestar, uma vez que não há um alelo dominante que impeça a sua expressão.
Na espécie humana. os principais exemplos de herança ligada ao sexo são:

Daltonismo
Trata-se da incapacidade relativa na distinção de certas cores que, na sua forma clássica, geralmente cria confusão entre o verde e o vermelho.
É um distúrbio causado por um gene recessivo localizado na porção heteróloga do cromossomo X, o gene Xd, enquanto o seu alelo dominante XD determina a visão normal.
A mulher de genótipo XDXd, embora possua um gene para o daltonismo, não manifesta a doença, pois se trata de um gene recessivo. Ela é chamada de portadora do gene para o daltonismo. O homem de genótipo XdY, apesar de ter o gene Xdem dose simples, manifesta a doença pela ausência do alelo dominante capaz de impedir a expressão do gene recessivo.
 
Genótipo
Fenótipo
XDXD
mulher normal
XDXd
mulher normal portadora
XdXd
mulher daltônica
XD Y
homem normal
Xd Y
homem daltônico

O homem XdY não é nem homozigoto ou heterozigoto: é hemizigoto recessivo, pois do par de genes ele só possui um. O homem de genótipo XDY é hemizigoto dominante.


Se você consegue distinguir perfeitamente o número 74 entre as bolinhas da figura acima,
então você não é daltônico.

Hemofilia
É um distúrbio da coagulação sangüínea, em que falta o fator VIII, uma das proteínas envolvidas no processo, encontrado no plasma das pessoas normais. As pessoas hemofílicas têm uma tendência a apresentarem hemorragias graves depois de traumatismos banais, como um pequeno ferimento ou uma extração dentária. O tratamento da hemofilia consiste na administração do fator VIII purificado ou de derivados de sangue em que ele pode ser encontrado (transfusões de sangue ou de plasma). Pelo uso frequente de sangue e de derivados, os pacientes hemofílicos apresentam uma elevada incidência de AIDS e de hepatite tipo B, doenças transmitidas através dessas vias.



A hemofilia atinge cerca de 300.000 pessoas. É condicionada por um gene recessivo, representado por h, localizado no cromossomo X. É pouco freqüente o nascimento de mulheres hemofílicas, já que a mulher, para apresentar a doença , deve ser descendente de um hímen doente (XhY) e de uma mulher portadora (XHXh) ou hemofílica (XhXh). Como esse tipo de cruzamento é extremamente raro, acredita-se que praticamente inexistiriam mulheres hemofílicas. No entanto, já foram relatados casos de hemofílicas, contrariando assim a noção popular de que essas mulheres morreriam por hemorragia após a primeira menstruação (a interrupção do fluxo menstrual deve-se à contração dos vasos sanguíneos do endométrio, e não a coagulação do sangue).

Herança holândrica, ligada ao cromossomo Y ou herança restrita ao sexo
O cromossomo Y possui alguns genes que lhe são exclusivos, na porção encurvada que não é homóloga ao X. Esses genes, também conhecidos como genes holândricos, caracterizam a chamada herança restrita ao sexo.
Não há duvidas de que a masculinização está ligada ao cromossomo Y. Um gene que tem um papel importante nesse fato é o TDF ( iniciais de testis-determining factor), também chamado de SRY(iniciais de sex-determining region of Y chromossome), que codifica o fator determinante de testículos. O gene TDF já foi identificado e está localizado na região não-homóloga do cromossomo Y.
Tradicionalmente, a hipertricose, ou seja, presença de pelos no pavilhão auditivo dos homens, era citada como um exemplo de herança restrita ao sexo. No entanto, a evidência que a hipertricose deve-se a uma herança ligada ao Y está sendo considerada inconclusiva, pois, em algumas famílias estudadas, os pais com hiperticose tiveram filhos homens com e sem pêlos nas bordas das orelhas.
Na herança restrita ao sexo verdadeira: Todo homem afetado é filho de um homem também afetado; todos os seus filhos serão afetados, e as filhas serão normais.

Herança autossômica influenciada pelo sexo

Nessa categoria, incluem-se as características determinadas por genes localizados nos cromossomos autossomos cuja expressão é, de alguma forma, influenciada pelo sexo do portador.
GenótipoNo homemNa mulher
CC
calvo
calva
Cc
calvo
não-calva
cc
não-calvo
não-calva
 
Nesse grupo, há diversas modalidades de herança, das quais ressaltaremos a mais conhecida, a dominância influenciada pelo sexo, herança em que, dentro do par de genes autossômicos, um deles é dominante nos homens e recessivo nas mulheres, e o inverso ocorre com o seu alelo. Na espécie humana, temos o caso da calvície.

Outras formas de herança autossômica influenciada pelo sexo são a penetrância influenciada pelo sexo e a expressividade influenciada pelo sexo. Na espécie humana, a ocorrência de malformações de vias urinárias apresenta uma penetrância muito maior entre os homens do que entre as mulheres. Elas, portanto, ainda que possuam o genótipo causador da anormalidade, podem não vir a manifestá-la. A expressividade também pode ser influenciada pelo sexo. Um exemplo bem conhecido é o do lábio leporino, falha de fechamento dos lábios. Entre os meninos, a doença assume intensidade maior que nas meninas, nas quais os defeitos geralmente são mais discretos.



Basicamente, há duas evidências que permitem suspeitar de um caso de herança relacionada com o sexo:
1º) Quando o cruzamento de um macho afetado com uma fêmea não afetada gera uma descendência diferente do cruzamento entre um macho não afetado com uma fêmea afetada.
2º) Quando a proporção fenotípica entre os descendentes do sexo masculino forem nitidamente diferentes da proporção nos descendentes do sexo feminino.


A segunda lei de Mendel


A segregação independente de dois ou mais pares de genes

 
Além de estudar isoladamente diversas características fenotípicas da ervilha, Mendel estudou também a transmissão combinada de duas ou mais características. Em um de seus experimentos, por exemplo, foram considerados simultaneamente a cor da semente, que pode ser amarela ou verde, e a textura da casca da semente, que pode ser lisa ou rugosa.
Plantas originadas de sementes amarelas e lisas, ambos traços dominantes, foram cruzadas com plantas originadas de sementes verdes e rugosas, traços recessivos. Todas as sementes produzidas na geração F1 eram amarelas e lisas.
A geração F2, obtida pela autofecundação das plantas originadas das sementes de F1, era composta por quatro tipos de sementes:
9/16 amarelo-lisas
3/16 amarelo-rugosas
3/16 verde-lisas
1/16 verde-rugosas

Em proporções essas frações representam 9 amarelo-lisas: 3 amarelo-rugosas: 3 verde-lisas: 1 verde-rugosa.
Com base nesse e em outros experimentos, Mendel aventou a hipótese de que, na formação dos gametas, os alelos para a cor da semente (Vv) segregam-se independentemente dos alelos que condicionam a forma da semente (Rr). De acordo com isso, um gameta portador do alelo V pode conter tanto o alelo R como o alelo r, com igual chance, e o mesmo ocorre com os gametas portadores do alelov.
Uma planta duplo-heterozigota VvRr formaria, de acordo com a hipótese da segregação independente, quatro tipos de gameta em igual proporção: 1 VR: 1Vr: 1 vR: 1 vr.

A segunda lei de Mendel
Mendel concluiu que a segregação independente dos fatores para duas ou mais características era um princípio geral, constituindo uma segunda lei da herança. Assim, ele denominou esse princípio segunda lei da herança ou lei da segregação independente, posteriormente chamada segunda lei de Mendel: Os fatores para duas ou mais características segregam-se no híbrido, distribuindo-se independentemente para os gametas, onde se combinam ao acaso.

A proporção 9:3:3:1
Ao estudar a herança simultânea de diversos pares de características. Mendel sempre observou, em F2, a proporção fenotípica 9:3:3:1, conseqüência da segregação independente ocorrida no duplo-heterozigoto, que origina quatro tipos de gameta.

Segregação independente de 3 pares de alelos
Ao estudar 3 pares de características simultaneamente, Mendel verificou que a distribuição dos tipos de indivíduos em F2 seguia a proporção de 27: 9: 9: 9: 3: 3: 3: 1. Isso indica que os genes para as 3 características consideradas segregam-se independentemente nos indivíduos F1, originando 8 tipos de gametas.
Em um dos seus experimentos, Mendel considerou simultaneamente a cor (amarela ou verde), a textura da casca (lisa ou rugosa) e a cor da casca da semente (cinza ou branca).
O cruzamento entre uma planta originada de semente homozigota dominante para as três características (amarelo-liso-cinza) e uma planta originada de semente com traços recessivos (verde-rugosa-branca) produz apenas ervilhas com fenótipo dominante, amarelas, lisas e cinza. Esses indivíduos são heterozigotos para os três pares de genes (VvRrBb). A segregação independente desses três pares de alelos, nas plantas da geração F1, leva à formação de 8 tipos de gametas.
 
Os gametas produzidos pelas plantas F1 se combinam de 64 maneiras possíveis (8 tipos maternos X 8 tipos paternos), originando 8 tipos de fenótipos.

Determinando o número de tipos de gametas na segregação independente

Para determinar o número de tipos de gametas formados por um indivíduo, segundo a segregação independente, basta aplicar a expressão 2n, em que n representa o número de pares de alelos no genótipo que se encontram na condição heterozigota.

Obtendo a Proporção 9:3:3:1 sem Utilizar o Quadro de Cruzamentos
Genótipo
Valor de n
2n
Número de gametas
AA
0
20
1
Aa
1
21
2
AaBB
1
21
2
AaBb
2
22
4
AABbCCDd
2
22
4
AABbCcDd
3
23
8
AaBbCcDd
4
24
16
AaBbCcDdEe
5
25
32

A 2º lei de Mendel é um exemplo de aplicação direta da regra do E de probabilidade, permitindo chegar aos mesmos resultados sem a construção trabalhosa de quadro de cruzamentos. Vamos exemplificar, partindo do cruzamento entre suas plantas de ervilha duplo heterozigotas:
P: VvRr X VvRr
  • Consideremos, primeiro, o resultado do cruzamento das duas características isoladamente:
Vv X VvRr X Rr
3/4 sementes amarelas
3/4 sementes lisas
1/4 sementes verdes
1/4 sementes rugosas
  • Como desejamos considerar as duas características simultaneamente, vamos calcular a probabilidade de obtermos sementes amarelas e lisas, já que se trata de eventos independentes. Assim,
sementes amarelas              E              sementes lisas
                             
           3/4                      X                  3/4                      =     9/16
  • E a probabilidade de obtermos sementes amarelas e rugosas:
sementes amarelas               E              sementes rugosas
                 
           3/4                      X                   1/4                     =    3/16
  • Agora a probabilidade de obtermos sementes verdes e lisas:
sementes verdes                E              sementes lisas
                      
          1/4                     X                    3/4                     =   3/16
  • Finalmente, a probabilidade de nós obtermos sementes verdes e rugosas:
  sementes verdes               E              sementes rugosas
               
         1/4                      X                   1/4                    =   1/16

Utilizando a regra do E, chegamos ao mesmo resultado obtido na construção do quadro de cruzamentos com a vantagem da rapidez na obtenção da resposta.

A relação Meiose e 2ª Lei de Mendel


Existe uma correspondência entre as leias de Mendel e a meiose. Acompanhe na figura o processo de formação de gametas de uma célula de indivíduo diíbrido, relacionando-o à 2ª Lei de Mendel. Note que, durante a meiose, os homólogos se alinham em metáfase e sua separação ocorre ao acaso, em duas possibilidades igualmente viáveis. A segregação independente dos homólogos e, consequentemente, dos fatores (genes) que carregam, resulta nos genótipos AB, ab, Ab e aB.


A 2ª Lei de Mendel é sempre obedecida?


A descoberta de que os genes estão situados nos cromossomos gerou um impasse no entendimento da 2º Lei de Mendel. Como vimos, segundo essa lei, dois ou mais genes não-alelos segregam-se independentemente, desde que estejam localizados em cromossomos diferentes. Surge, no entanto, um problema. Mendel afirmava que os genes relacionados a duas ou mais características sempre apresentavam segregação independente. Se essa premissa fosse verdadeira, então haveria um cromossomo para cada gene. Se considerarmos que existe uma infinidade de genes, haveria, então, uma quantidade assombrosa de cromossomos, dentro de uma célula, o que não é verdade. Logo, como existem relativamente poucos cromossomos no núcleo das células e inúmeros genes, é intuitivo concluir que, em cada cromossomo, existe uma infinidade de genes, responsáveis pelas inúmeras características típicas de cada espécie. Dizemos que esses genes presentes em um mesmo cromossomo estão ligados ou em linkage e caminham juntos para a formação dos gametas.

Assim a 2ª lei de Mendel nem sempre é obedecida, bastando para isso que os genes estejam localizados no mesmo cromossomo, ou seja, estejam em linkage.


Linkage

Genes unidos no mesmo cromossomo

 
T. H. Morgan e seus colaboradores trabalharam com a mosca da fruta, Drosophila melanogaster, e realizaram cruzamentos em que estudaram dois ou mais pares de genes, verificando que, realmente, nem sempre a 2ª Lei de Mendel era obedecida. Concluíram que esses genes não estavam em cromossomos diferente, mas, sim, encontravam-se no mesmo cromossomo (em linkage).


Um dos cruzamentos efetuados por Morgan
Em um dos seus experimentos, Morgan cruzou moscas selvagens de corpo cinza e asas longas com mutantes de corpo preto e asas curtas (chamadas de asas vestigiais). Todos os descendentes de F1apresentavam corpo cinza e asas longas, atestando que o gene que condiciona corpo cinza (P) domina o que determina corpo preto (p), assim como o gene para asas longas (V) é dominante sobre o (v) que condiciona surgimento de asas vestigiais.
A seguir Morgan cruzou descendentes de F1 com duplo-recessivos (ou seja, realizou cruzamentos testes). Para Morgan, os resultados dos cruzamentos-teste revelariam se os genes estavam localizados em cromossomos diferentes (segregação-independente) ou em um mesmo cromossomo (linkage).
Surpreendentemente, porém, nenhum dos resultados esperados foi obtido. A separação e a contagem dos decendentes de F2 revelou o seguinte resultado:
  • 41,5% de moscas com o corpo cinza e asas longas;
  • 41,5% de moscas com o corpo preto e asas vestigiais;
  • 8,5% de moscas com o corpo preto e asas longas;
  • 8,5% de moscas com o corpo cinza e asas vestigiais.
Ao analisar esse resultado, Morgan convenceu-se de que os genes P e V localizavam-se no mesmo cromossomo. Se estivessem localizados em cromossomos diferentes, a proporção esperada seria outra (1: 1: 1: 1). No entanto, restava a dúvida: como explicar a ocorrência dos fenótipos corpo cinza/asas vestigiais e corpo preto/asas longas?
A resposta não foi difícil de ser obtida. Por essa época já estava razoavelmente esclarecido o processo da meiose. Em 1909, o citologista F. A. Janssens (1863-1964) descreveu o fenômeno cromossômico conhecido como permutação ou crossing over, que ocorre durante a prófase I da meiose e consiste na troca de fragmentos entre cromossomos homólogos.
 
Em 1911, Morgan usou essa observação para concluir que os fenótipos corpo cinza/asas vestigiais e corpo preto/asas longas eram recombinantes e devido a ocorrência de crossing-over.

Como diferenciar Segregação independente (2ª Lei de Mendel) de Linkage?

Quando comparamos o comportamento de pares de genes para duas características para a segunda lei de Mendel com a ocorrência de linkage crossing-over em um cruzamento genérico do tipo AaBb X aabb, verificamos que em todos os casos resultam quatro fenótipos diferentes:
  • Dominante/dominante
  • Dominante/recessivo
  • Recessivo/dominante
  • Recessivo/recessivo.
A diferença em cada caso está nas proporções obtidas. No caso da 2ª lei de Mendel, haverá 25% de cada fenótipo. No linkage com crossing, todavia, os dois fenótipos parentais surgirão com frequência maior do que as frequências dos recombinantes.
A explicação para isso reside no fato de, durante a meiose a permuta não ocorrer em todas as células, sendo, na verdade, um evento relativamente raro. Por isso, nos cruzamentos PpVv X ppvv, da pagina anterior, foram obtidos 83% de indivíduos do tipo parental (sem crossing) e 17% do tipo recombinantes (resultantes da ocorrência de permuta).
Frequentemente, nos vários cruzamentos realizados do tipo AaBb X aabb, Morgan obteve os dois fenótipos parentais (AaBb e aabb), na proporção de 50% cada. Para explicar esse resultado, ele sugeriu a hipótese que os genes ligados ficam tão próximos um do outro que dificultam a ocorrência de crossing over entre eles. Assim, por exemplo, o gene que determina a cor preta do corpo da drosófila e o gene que condiciona a cor púrpura dos olhos ficam tão próximos que entre eles não ocorre permuta. Nesse caso se fizermos um cruzamento teste entre o duplo-heterozidoto e o duplo-recessivo, teremos nos descendentes apenas dois tipos de fenótipos, que serão correspondentes aos tipos parentais.

Os arranjos “cis” e “trans” dos genes ligados


 
Considerando dois pares de genes ligados, como, por exemplo, A/a e B/b, um indivíduo duplo heterozigoto pode ter os alelos arranjados de duas maneiras nos cromossomos:
Os alelos dominantes A e B se situam em um cromossomo, enquanto os alelos recessivos a e b se situam no homólogo correspondente. Esse tipo de arranjo é chamado de Cis. O alelo dominante A e o alelo recessivo b se situam em um cromossomo, enquanto o alelo recessivo a e o alelo dominanteB, se situam no homólogo correspondente. Esse tipo de arranjo é chamado de Trans.
Podemos descrever esses arranjos, usando um traço duplo ou simples para descrever o cromossomo, ou mais simplificadamente, o arranjo pode ser descrito como AB/ab para Cis e Ab/aB para trans. O arranjo cis e trans dos alelos no duplo-heterozigoto pode ser facilmente identificado em um cruzamento teste. No caso dos machos de Drosófila, se o arranjo for cis (PV/pv), o duplo heterozigoto forma 50% de gametas PV e 50% de gametas pv. Se o arranjo for trans (Pv/pV), o duplo heterozigoto forma 50% de gametas Pv e 50% de pV.
Nas fêmeas de Drosófila, nas quais ocorrem permutações, o arranjo cis ou trans pode ser identificado pela frequência das classes de gametas. As classes mais frequentes indicam as combinações parentais e as menos frequentes as recombinantes.

Interações de genes não-alelos


A analise das proporções entre as classes fenotípicas da descendência de um cruzamento pode nos informar sobre o número de genes envolvidos em determinado caráter. Por exemplo, quando se trata de herança controlada por um único par de alelos com dominância completa, a segregação leva à clássica proporção 3:1, ou seja, no cruzamento entre heterozigotos, ¾ da descendência têm a característica dominante e ¼ tema a característica recessiva. Isso indica que apenas um gene está envolvido na herança.
Quando analisamos simultaneamente duas características, cada uma condiciona por um par de alelos com dominância completa e segregação independente, surge a proporção 9:3:3:1. A descendência do cruzamento de duplo-heterozigotos é constituída por 9/16 com ambas as características dominantes, 6/16 com uma das características dominante e outra recessiva e 1/16 com ambas as características recessivas.
Existem casos em que dois ou mais genes, localizados ou não no mesmo cromossomo, interagem para produzir um determinado caráter. Quando isso acontece, a análise das proporções fenotípicas entre os descendentes pode nos informar quantos genes estão envolvidos na formação da característica e qual o tipo de interação existente entre eles.

Interação gênica na forma da crista de galinhas
Em 1905, o geneticista inglês William Bateson e seus colaboradores concluíram, depois de uma série de cruzamentos experimentais, que o caráter forma da crista em galinhas é condicionado pela interação de dois pares de alelos que se segregam independentemente. As combinações entre os diferentes alelos podem produzir quatro tipos de crista: rosa, ervilhanoz e simples.


Cruzamento ervilha X simples
Quando linhagens puras de aves de crista ervilha são cruzadas com linhagens puras de aves de crista simples, obtém-se uma geração F1 constituída apenas por aves de crista ervilha. No experimento dos pesquisadores ingleses, quando as aves de F1 foram cruzadas entre si, a descendência foi de 332 aves com crista ervilha e 110 com crista simples, uma proporção muito próxima de 3:1

PEE X ee
F1
Crista ervilha Ee  X Ee Crista ervilha
F2
EE
Crista Ervilha
Ee
Crista Ervilha
Ee
Crista Ervilha
ee
Crista Simples


Cruzamento rosa X simples
Quando linhagens puras de aves de crista rosa são cruzadas com linhagens puras de crista simples, obtém-se uma geração F1 constituída apenas por aves de crista rosa. No experimento de Bateson, quando as aves de F1 foram cruzadas entre si, obteve-se uma geração F2 cosntituída por 221 aves de crista rosa e 83 de crista simples, proporção também muito próxima de 3:1.

PRR X rr
F1
Crista Rosa Rr  X Rr Crista Rosa
F2
RR
Crista Rosa
Rr
Crista Rosa
Rr
Crista Rosa
rr
Crista Simples

Cruzamento rosa X ervilha
Quando linhagens puras de aves de crista rosa são cruzadas com linhagens puras de crista ervilha, todos os descendentes apresentam um único tipo de crista, denominado “noz”, diferente das que têm seus genitores. No experimento realizado por Bateson, quando as aves de crista noz de F1 foram cruzadas entre si, a geração F2 apresentou 99 aves de crista noz, 26 de crista rosa, 38 de crista ervilha e 16 de crista simples, uma proporção bem próxima de 9:3:3:1. Essa é a proporção esperada no cruzamento de duplo-heterozigoto quanto a dois pares de alelos com segregação independente.

PeeRR X EErr
F1
Crista Noz EeRr X EeRr Crista Noz
 EREreRer
ER
EERR
Noz
EERr
Noz
EeRR
Noz
EeRr
Noz
Er
EERr
Noz
EErr
Ervilha
EeRr
Noz
Eerr
Ervilha
eR
EeRR
Noz
EeRr
Noz
eeRR
Rosa
eeRr
Rosa
er
EeRr
Noz
Eerr
Ervilha
eeRr
Rosa
eerr
Simples
F2


Cruzamento teste noz X simples
Quando a equipe de Bateson cruzou, a título de teste, algumas aves de crista noz da geração F1 com aves de crista simples, de genótipo supostamente duplo-recessivo rree, foram obtidos, 139 descendentes de crista noz, 142 de crista rosa, 112 de crista ervilha e 141 com crista simples, uma proporção muito próxima de 1:1:1:1. Estes resultados confirmam que os indivíduos de F1 são duplo-heterozigotos e produzem quatro tipos de gametas em iguais proporções, como é esperado pela lei de segregação independente.
Bateson e seus colaboradores concluíram, então, que o tipo de crista em galinhas é condicionado por dois genes de alelos, R/r e E/e, que interagem e se segregam independentemente. A interação entre os alelos R e E resulta em uma crista noz; entre o alelo recessivo r e o dominante E resulta em uma crista ervilha, e entre os alelos recessivos r e e resulta em crista simples.

Epistasia


Existem casos em que os alelos de um gene inibem a ação dos alelos de um outro par, que pode ou não estar no mesmo cromossomo. Esse fenômeno é chamado epistasia (do grego epi, sobre, e stasis, parada, inibição). O gene que exerce a ação inibitória é chamado epistático, e o que sofre a inibição é chamado hipostático.
Se o gene epistático atuar em dose simples, isto é, se a presença de um único alelo epistático for suficiente para causar a inibição do hipostático, fala-se em epistasia dominante. Por outro lado, se o alelo que determina a epistasia atua somente em dose dupla, fala-se em epistasia recessiva.

Um exemplo de epistasia recessiva

Os camundongos comuns podem ter três diferentes cores de pelagem:
  • preto;
  • albino;
  • aguti.
 

Estes fenótipos são determinados por dois locos gênicos, que interagem entre eles. Vamos separar os locos para entender o fenômeno: o loco que determina a cor da pelagem foi batizado como A. Quando o genótipo do indivíduo for A_ (este traço pode significar A ou a), ele apresentará a cor aguti e quando foraa o indivíduo terá os pêlos pretos. O outro loco apenas controla a expressão do loco A. Sempre que o genótipo do indivíduo for P_, ele apresentará o fenótipo determinado por A, e quando o genótipo for pp, o indivíduo será albino, independente do genótipo para o loco A.
Observe o cruzamento ao lado e veja como funciona esta interação:
 
Repare que a única "função" do loco P é controlar a expressão de A. Assim, só é possível saber o genótipo de um indivíduo para o loco P se ele for albino, e neste caso, será impossível predizer o genótipo para alelo A. 
Este é um exemplo clássico de Epistasia. Neste caso ela é chamada de Epistasia Recessiva, já que ocorre quando o loco epistático exerce influência sobre o outro ao ocorrer em homozigose recessiva. 
Lembrando: Epistasia é definida como a interação onde os alelos de um par de gene inibem a ação dos alelos de um outro par, que pode ou não estar num mesmo cromossomo.

Um exemplo de epistasia dominante
Há outro tipo de epistasia, que é chamada deEpistasia Dominante. Como você pode imaginar, este tipo de epistasia acontece quando o loco epistático exerce influência sobre o outro ao apresentar pelo menos um alelo dominante.

A cor da plumagem em galinhas é determinada por dois locos. Um deles determina a cor propriamente dita e o outro controla a ação deste primeiro (não esqueça que este é um exemplo de epistasia). O alelo Ccondiciona plumagem colorida e c plumagem branca. Estes alelos interagem com os alelos I e i, de forma que, se um indivíduo tem um alelo I no genótipo, sua pelagem será branca.
Assim, apenas as aves de genótipo C_ii são coloridas. As aves ccii são brancas por não apresentarem o alelo de pigmentação (C) e as aves C_I_ são brancas porque o alelo I impede a pigmentação. Basta que a galinha tenha o alelo I em seu genótipo (_ _ I _) para que não seja produzido pigmento. Portanto, o gene epistático I atua em dose simples, comportando-se como se fosse dominante. Daí esse tipo de interação gênica ser conhecida como epistasia dominante.

 CIcICici
CI
CCII
Branco
CcII
Branco
CCIi
Branco
CcIi
Branco
cI
CcII
Branco
ccII
Branco
CcIi
Branco
ccIi
Branco
Ci
CCIi
Branco
CcIi
Branco
CCii
Colorido
Ccii
Colorido
ci
CcIi
Branco
ccIi
Branco
Ccii
Colorido
ccii
Branco
F2


Ação gênica complementar

A cor da flor das ervilhas de cheiro
Bateson e Punnet descreveram outro caso de interação gênica ao analisarem a herança da cor da flor em plantas de ervilha-de-cheiro. As flores, nessas plantas, podem ter coloração branca ou púrpura. Cruzando duas plantas de flores brancas de origens diferentes, obtiveram em F1 somente plantas produtoras de flores púrpura. Esses indivíduos de F1, intercuzados, produziram em F2 dois tipos de fenótipos, na proporção de : 9/16 plantas produtoras de flores púpura e 7/16 plantas produtoras de flores brancas.
Neste caso, também temos a interação de dois pares de genes na determinação de um caráter (cor da flor). A cor púrpura é condicionada pela interação dos dois genes dominates, A e B (A_B_).
Para a ocorrência de flores da cor branca, temos duas possibilidades:
  • A presença de apenas um dos genes dominantes, A ou B (A_bb ou aab_); ou
  • A ausência dos dois genes dominantes (aabb).
GenótiposFenótipos
A_B_
púrpura
A_bb
branca
aaB_
branca
aabb
branca

Detalhando os cruzamentos realizados com flores brancas de origens diferentes, temos:

PAAbb X aaBB
F1
AaBb
flores púrpuras

AaBb           X               AaBb
Gametas possíveis: AB, Ab, aB, ab

Vamos ver o cruzamento em detalhe:
 ABAbaBab
AB
AABB
Púrpura
AABb
Púrpura
AaBB
Púrpura
AaBb
Púrpura
Ab
AABb
Púrpura
AAbb
Branca
AaBb
Púrpura
Aabb
Branca
aB
AaBB
Púrpura
AaBb
Púrpura
aaBB
Branca
aaBb
Branca
ab
AaBb
Púrpura
Aabb
Branca
aaBb
Branca
aabb
Branca
F2

Quadro resumo!
Proporções fenotípicas obtidas do cruzamento entre duplo-heterozigotos em diferentes formas de interação de dois genes, com segregação independente. Observe a correlação entre as proporções genotípicas e fenotípicas para cada caso.

Tipos de interaçãoGenótipos
A_B_
A_bb
aaB_
aabb
Proporção clássica
9
3
3
1
Epistasia dominante
12
3
1
Epistasia recessiva
9
3
4
Genes duplos com efeitos cumulativos
9
6
1
Genes duplos dominantes
15
1
Genes duplos recessivos
9
7
Interação dominante e recessiva
13
3


Herança Quantitativa


A herança quantitativa também é um caso particular de interação gênica. Neste caso, em que as diferenças fenotípicas de uma dada característica não mostram variações expressivas, as variações são lentas e contínuas e mudam gradativamente, saindo de um fenótipo “mínimo” até chegar a um fenótipo “máximo”. É fácil concluir, portanto, que na herança quantitativa (ou poligênica) os genes possuem efeito aditivo e recebem o nome de poligenes.
A herança quantitativa é muito frequente na natureza. Algumas características de importância econômica, como a produção de carne em gado de corte, produção de milho etc., são exemplos desse tipo de herança. No homem, a estatura, a cor da pele e, inclusive, inteligência, são casos de herança quantitativa.

Herança da cor da pele no homem
Segundo Davenport (1913), a cor da pele na espécie humana é resultante da ação de dois pares de genes (AaBb), sem dominância. Dessa forma, A e B determinam a produção da mesma quantidade do pigmento melanina e possuem efeito aditivo. Logo, conclui-se que deveria existir cinco tonalidades de cor na pele humana, segundo a quantidade de genes A e B.

GenótiposFenótipos
aabb
pele clara
Aabb, aaBb
mulato claro
AAbb, aaBB, AaBb
mulato médio
AABb, AaBB
mulato escuro
AABB
pele negra

Vejamos os resultados genotípicos e fenotípicos que seriam obtidos a partir do cruzamento de dois indivíduos mulatos médios, duplo-heterozigotos:

mulato médo            X           mulato médio
AaBb                                                AaBb

 ABAbaBab
AB
AABB
Negro
AABb
mulato escuro
AaBB
mulato escuro
AaBb
Púrpura
Ab
AABb
mulato escuro
AAbb
mulato médio
AaBb
mulato médio
Aabb
mulato claro
aB
AaBB
mulato escuro
AaBb
mulato médio
aaBB
mulato médio
aaBb
mulato claro
ab
AaBb
mulato médio
Aabb
mulato claro
aaBb
mulato claro
aabb
Branca
Fenótipos:
1/16      :      4/16      :        6/16        :        4/16        :       1/16
branco      mulato claro      mulato médio     mulato escuro         negro

E a cor dos olhos?
Todo o professor de biologia tem que responder, durante as aulas de genética, ao inevitável questionamento sobre como é herdada a cor dos olhos. Contudo, muitos ainda tratam erroneamente essa característica genética como um tipo de herança mendeliana simples, cuja ocorrência é influenciada por um único par de genes associados com a produção de olhos escuros e claros. Essa explicação simplista, porém, não mostra como surge toda a variedade de cores presentes nos olhos e não esclarece por que pais de olhos castanhos podem ter filhos com olhos castanhos, azuis, verdes, ou de qualquer outra tonalidade. A cor dos olhos é uma característica cuja herança é poligênica, um tipo de variação contínua em que os alelos de vários genes influenciam na coloração final dos olhos. Isso ocorre por meio da produção de proteínas que dirigem a proporção de melanina depositada na íris. Outros genes produzem manchas, raios, anéis e padrões de difusão dos pigmentos.

Distribuição dos fenótipos em curva normal ou de Gauss.
Normalmente, os fenótipos extremos são aqueles que se encontram em quantidades menores, enquanto os fenótipos intermediários são observados em frequências maiores. A distribuição quantitativa desses fenótipos estabelece uma curva chamada normal (curva de Gauss).


O número de fenótipos que podem ser encontrados, em um caso de herança poligênica, depende do número de pares de alelos envolvidos, que chamamos n.
Número de fenótipos = 2n + 1

Se uma característica é determinada por três pares de alelos, sete fenótipos distintos podem ser encontrados. Cada grupo de indivíduos que expressam o mesmo fenótipo constitui uma classe fenotípica.
Sabendo-se o número de pares envolvidos na herança, podemos estimar a frequência esperada de indivíduos que demonstram os fenótipos extremos, em que é o número de pares de genes.
Frequencia dos fenótipos extremos =1/4n



Pleiotropia

Um par de genes, várias características
Pleiotropia (do grego, pleion = mais numeroso e tropos = afinidade) é o fenômeno em que um par de genes alelos condiciona o aparecimento de várias características no mesmo organismo. A pleiotropia mostra que a idéia mendeliana, de que cada gene afeta apenas uma característica, nem sempre é valida. Por exemplo, certos ratos nascem com costelas espessadas, traquéia estreitada, pulmões com elasticidade diminuída e narinas bloqueadas, o que fatalmente os levará a morte. Todas essas características são devidas à ação de apenas um par de genes, portanto, um caso de pleiotropia.



Mutações e aberrações cromossômicas
Mutação é uma alteração no material genético. Há dois tipos de mutação, a gênica e a cromossômica.
mutação gênica é uma alteração no gene devido a mudanças na frequência das bases nitrogenadas do DNA. A mutação cromossômica (aberração cromossômica) é uma mudança no número ou na estrutura dos cromossomos.

Mutações Gênicas
Em 1941, os pesquisadores Beadle e Tatum, fazendo experiências com um tipo de bolor de pão, aNeurospora sp, observaram que nem sempre a autoduplicação do DNA ocorria de modo perfeito. O bolor crescia num meio de cultura contendo açúcar e diversos sais inorgânicos. Seus esporos eram submetidos a raios X e alguns deles passavam depois a produzir bolores com novas características. Por exemplo, alguns perdiam a capacidade de fabricar lisina e só conseguiam sobreviver quando aquele aminoácido era acrescentado ao meio de cultura. Essa incapacidade foi relaciona com a falta de uma enzima necessária para a síntese de lisina. Concluíram, então, que os raios X teriam danificado a formação daquele tipo específico de enzima.
Como a produção de uma enzima depende de informação codificada no DNA, a conclusão daqueles pesquisadores ficou conhecida como a relação "um gene - uma enzima". Atualmente, fala-se, com maior precisão, na relação "um gene - uma cadeia polipeptídica".
A modificação genética induzida através dos raios X é conhecida como mutação. As mutações podem resultar de uma alteração na seqüência dos nucleotídeos, ou de quebras e mudanças de posição dos fragmentos da molécula de DNA. Portanto são mutações as alterações numéricas e estruturais dos cromossomos, que persistem através das autoduplicações, transmitindo-se às células-filhas. Existem também erros que ocorrem no RNA, no momento das transcrições ou das traduções, e afetam somente a própria célula.

Agentes Mutagênicos
 
As mutações são produzidas por agentes mutagênicos, que compreendem principalmente vários tipos de radiação, dentre os quais os raios ultravioleta, os raios X e substâncias que interferem na autoduplicação do DNA ou na transcrição do RNAm, determinando erros nas sequências dos nucleotídeos.
Os agentes mutagênicos são fatores que podem elevar a freqüência das mutações. Em 1920, Hermann J. Muller descobriu quem submetendo drosófilas ao raio X, a frequência das mutações aumentava cerda de cem vezes em relação à população não exposta. O aumento na taxa de mutações pode ser obtido pelo emprego de numerosos agentes físicos e químicos.
A lista das substâncias mutagênicas tem aumentado muito nos últimos anos, sendo bastante conhecidos o gás mostarda, o ácido nitroso, a bromouracila, o formaldeído, anicotina. Vários tipos de câncer podem ser produzidos por alterações ocorridas nos ácido nucléicos; por isso os mesmos agentes mutagênicos podem ser também cancerígenos. Porém, a mais importante dentre eles são as radiações. Quando uma célula recebe radiação, as moléculas podem ser quebradas ou alteradas em suas estruturas. Quando as alterações são muito grandes, podem interferir com o metabolismo e divisão celular, e a célula morre.
Quando ela sobrevive à radiação, as modificações são duplicadas e transmitidas para as células das gerações sucessivas.
Entre os agentes físicos, os mais conhecidos são as radiações, bem como o raio X. O calor também aumente a incidência das mutações: na espécie humana, sua frequência em trabalhadores de altos-fornos de usinas siderúrgicas, os quais permanecem muito tempo em locais de temperatura elevada, é mais alta que na população geral.
Substancias químicas, como o "gás mostarda" e o ácido nitroso (HNO2), também podem aumentar a frequência de mutações. Aerossóis, corantes alimentares e alguns componentes da fumaça do cigarro são capazes de alterar o patrimônio genético de uma célula, podendo levar ao desenvolvimento de diversas formas de mutações e câncer.
Todos os seres vivos estão submetidos, diariamente, a vários desses agentes. Entretanto, as mutações permanecem como eventos não muito frequentes. A relativa estabilidade do material genético deve-se à existência de um grupo de enzimas de reparação, que "patrulham" permanentemente as moléculas de DNA à caça de alterações na sequência de seus nucleotideos. Na maioria das vezes, essas alterações são detectadas e consertadas.

Aberrações cromossômicas


Cada planta e animal se caracteriza por um conjunto de cromossomos, representado uma vez em células haplóides (por exemplo, gametas e esporos) e duas vezes em células diplóides.
Cada espécie tem um número específico de cromossomos. Mas, às vezes ocorrem irregularidades na divisão nuclear, ou podem acontecer "acidentes" (como os de radiação) durante a interfase de modo que se podem formar células ou organismos inteiros com genomas aberrantes. Tais aberrações cromossômicas podem incluir genomas inteiros, cromossomos isolados inteiros, ou só partes de cromossomos. As aberrações cromossômicas podem ser numéricas ou estruturais e envolver um ou mais autossomos, cromossomos sexuais ou ambos. As aberrações cromossômicas numéricas incluem os casos em que há aumento ou diminuição do número do cariótipo normal da espécie humana, enquanto as aberrações cromossômicas estruturais incluem os casos em que um ou mais cromossomos apresentam alterações de sua estrutura.Assim, os citologistas reconhecem:
(1)Alterações no Número de Cromossomos (Heteroploidia)
(2)Alterações na Estrutura dos Cromossomos.
heteroploidia pode atingir conjuntos inteiros de cromossomos (euploidia) ou perda ou adição de cromossomos inteiros isolados (aneuploidia). Todas essas alterações têm um importante efeito sobre o desenvolvimento, pois ao alterar a estrutura nuclear normal podem produzir alterações fenotípicas.

Alterações no número de cromossomos
As variações numéricas são de dois tipos: as euploidias, que originam células com número de cromossomos múltiplo do número haplóide, e as aneuploidias, que originam células onde há falta ou excesso de algum(ns) cromossomo(s). Assim, euploidias são alterações de todo genoma; quanto a esse aspecto os indivíduos podem ser haplóides (n), diplóides (2n), triplóides (3n), tetraplóides (4n), enfim, poliplóides (quando há vários genomas em excesso). Euploidias são raras em animais, mas bastante comuns e importantes mecanismos evolutivos nas plantas. Na espécie humana, a ocorrência das euploidias é incompatível com o desenvolvimento do embrião, determinando a ocorrência do aborto. Células poliplóides cujo número de cromossomos alcança 16n são encontradas na medula óssea, no fígado e nos rins normais, além de ocorrerem em células de tumores sólidos e leucemia.


Origem das Aneuploidias
As aneuploidias podem se originar de anomalias ocorridas na meiose (isto é, serem pré-zigóticas) ou nas mitoses do zigoto (pós-zigóticas).
Quando a não-segregação é pré-zigótica, ela pode ter ocorrido na espermatogênese ou na ovulogênese. Na origem de indivíduos com dois cromossomos X e um Y, a contribuição feminina é maior do que a masculina; por outro lado, 77% dos casos onde há apenas um X tem origem em erros ocorridos na espermatogênese. Nas aneuploidias autossômicas, a influência da idade materna leva a supor que a participação feminina é maior do que a masculina. As aneuploidias produzidas por erros na mitose do zigoto ou na segmentação dos blastômeros são menos frequentes.
As aneuploidias devem-se à não separação (ou não-segregação) de um (ou mais) cromossomo(s) para as células-filhas durante a meiose ou durante as mitoses do zigoto A não-segregação na mitose decorre do não-rompimento do centrômero no início da anáfase ou da perda de algum cromossomo por não ter ele se ligado ao fuso.
A não-segregação na meiose é devida à falhas na separação dos cromossomos ou das cromátides, que se separam ao acaso para um pólo ou outro. Na meiose a não-segregação tanto pode ocorrer na primeira divisão como na segunda. No primeiro caso, o gameta com o cromossomo em excesso, em lugar de ter apenas um dos cromossomos de um dado par, ou seja, terá um cromossomo paterno e um materno. No segundo, o gameta com o cromossomo em excesso terá dois cromossomos paternos ou dois maternos, por exemplo.

Quando em consequência desses processos de não-segregação falta um cromossomo de um dado par, isto é, quando o número de cromossomos da célula é 2n - 1, diz-se, que a célula apresenta monossomiapara este cromossomo. Se faltam os dois elementos do mesmo par 2n - 2, tem-se nulisomia. Se, pelo contrário, houver aumento do número de cromossomos de um determinado par, a célula serápolissômica para o cromossomo em questão; ela será trissômicatetrassômicapentassômica etc., conforme tiver 1, 2 ou 3 cromossomos a mais, sendo, nesses casos, o seu número cromossômico designado por (2n + 1), (2n + 2), (2n + 3) etc.


Aneuploidias dos cromossomos sexuais


Síndrome de Klinefelter

São indivíduos do sexo masculino que apresentam cromatina sexual e cariótipo geralmente 47 XXY. Eles constituem um dentre 700 a 800 recém-nascidos do sexo masculino, tratando-se, portanto; de uma das condições intersexuais mais comuns. Outros cariótipos menos comuns são 48 XXYY48 XXXY49 XXXYY49 XXXXY que, respectivamente, exibem 1, 2. e 3 corpúsculos de Barr.


Embora possam ter ereção e ejaculação. são estéreis, pois seus testículos são pequenos e não produzem espermatozóides devido à atro fia dos canais seminíferos. Outras características muitas vezes presentes são: estatura elevada corpo eunucóide, pênis pequeno, pouca pilosidade no púbis e ginecomastia (crescimento das mamas).
 

Além dessas alterações do sexo fenotípico os pacientes com Síndrome de Klinefelter apresentam uma evidente diminuição do nível Intelectual, sendo esta tanto mais profunda quanto maior for o grau da polissomia.
Ao contrario do que ocorre na Síndrome de Turner, os pacientes Klinefelter apresentam problemas no desenvolvimento da personalidade, que é imatura e dependente, provavelmente em decorrência de sua inteligência verbal diminuída.

Até 1960 a prova definitiva para o diagnóstico era fornecida pelo exame histológico dos testículos que, mesmo após a puberdade, revela ausência de células germinativas nos canais seminíferos; raros são os casos de Klinefelter férteis que, evidentemente, apresentam alguns espermatozóides normais. Atualmente a Identificação dos Klinefelter é assegurada pelo cariótipo e pela pesquisa da cromatina sexual.



Sindrome do triplo X ou Super fêmea

Mulheres com cariótipo 47 XXX ocorrem numa freqüência relativamente alta: 1 caso em 700 nascimentos aproximadamente. Elas apresentam fenótipo normal, são férteis, mas muitas possuem um leve retardamento mental. Apresentam corpúsculo de Barr. 
Os casos de mulheres 48 XXXX e 49 XXXXX são raros e se caracterizam por graus crescentes de retardamento mental.


Sindrome do duplo Y ou Super macho

Indivíduos com cariótipo 47,XYY ocorrem com a freqüência de 1 caso por 1.000 nascimentos masculinos.
Embora sejam, na maioria, homens normais, os primeiros estudos sugeriam que entre eles ocorria uma freqüência extremamente alta de pacientes retardados mentalmente e com antecedentes criminais; tais estudos revelaram que cerca de 2% dos pacientes Internados em instituições penais e hospícios tinha este cariótipo, o que mostrava serem os indivíduos XYY internados 20 vezes mais numerosos (em lugar de 1 por mil, 2% corresponde a 20 por mil) do que na população livre.

No entanto, os mesmos dados revelaram que 96% dos indivíduos XYY são normais. Deste modo, tornam-se necessárias pesquisas mais amplas antes de se relacionar essa constituição cromossômica particular com determinados traços anormais de comportamento; é especialmente importante evitar uma interpretação Ingênua relacionada com um “cromossomo do crime”. 
Uma característica física bem evidente dos XYY é a estatura elevada, pois eles geralmente têm mais de 180 cm, ou seja. são 15cm mais altos do que a média dos indivíduos masculinos cromossomicamente normais.

Podemos sugerir que genes localizados no cromossomo Y elevam a estatura e predispõem seus portadores para comportamentos inesperados; de fato, o perfil psicológico do indivíduo XYY inclui imaturidade no desenvolvimento emocional e menor inteligência verbal, fatos que podem dificultar seu relacionamento interpessoal. Um fato digno de nota é que os pacientes institucionalizados, tanto XY comoXYY, exibem uma taxa de testosterona aumentada, o que pode ser um fator contribuinte para a inclinação anti-social e aumento de agressividade. 



Aberrações cromossômicas

Cada planta e animal se caracteriza por um conjunto de cromossomos, representado uma vez em células haplóides (por exemplo, gametas e esporos) e duas vezes em células diplóides.
Cada espécie tem um número específico de cromossomos. Mas, às vezes ocorrem irregularidades na divisão nuclear, ou podem acontecer "acidentes" (como os de radiação) durante a interfase de modo que se podem formar células ou organismos inteiros com genomas aberrantes. Tais aberrações cromossômicas podem incluir genomas inteiros, cromossomos isolados inteiros, ou só partes de cromossomos. As aberrações cromossômicas podem ser numéricas ou estruturais e envolver um ou mais autossomos, cromossomos sexuais ou ambos. As aberrações cromossômicas numéricas incluem os casos em que há aumento ou diminuição do número do cariótipo normal da espécie humana, enquanto as aberrações cromossômicas estruturais incluem os casos em que um ou mais cromossomos apresentam alterações de sua estrutura.Assim, os citologistas reconhecem:
(1)Alterações no Número de Cromossomos (Heteroploidia)
(2)Alterações na Estrutura dos Cromossomos.
heteroploidia pode atingir conjuntos inteiros de cromossomos (euploidia) ou perda ou adição de cromossomos inteiros isolados (aneuploidia). Todas essas alterações têm um importante efeito sobre o desenvolvimento, pois ao alterar a estrutura nuclear normal podem produzir alterações fenotípicas.

Alterações no número de cromossomos
As variações numéricas são de dois tipos: as euploidias, que originam células com número de cromossomos múltiplo do número haplóide, e as aneuploidias, que originam células onde há falta ou excesso de algum(ns) cromossomo(s). Assim, euploidias são alterações de todo genoma; quanto a esse aspecto os indivíduos podem ser haplóides (n), diplóides (2n), triplóides (3n), tetraplóides (4n), enfim, poliplóides (quando há vários genomas em excesso). Euploidias são raras em animais, mas bastante comuns e importantes mecanismos evolutivos nas plantas. Na espécie humana, a ocorrência das euploidias é incompatível com o desenvolvimento do embrião, determinando a ocorrência do aborto. Células poliplóides cujo número de cromossomos alcança 16n são encontradas na medula óssea, no fígado e nos rins normais, além de ocorrerem em células de tumores sólidos e leucemia.


Origem das Aneuploidias
As aneuploidias podem se originar de anomalias ocorridas na meiose (isto é, serem pré-zigóticas) ou nas mitoses do zigoto (pós-zigóticas).
Quando a não-segregação é pré-zigótica, ela pode ter ocorrido na espermatogênese ou na ovulogênese. Na origem de indivíduos com dois cromossomos X e um Y, a contribuição feminina é maior do que a masculina; por outro lado, 77% dos casos onde há apenas um X tem origem em erros ocorridos na espermatogênese. Nas aneuploidias autossômicas, a influência da idade materna leva a supor que a participação feminina é maior do que a masculina. As aneuploidias produzidas por erros na mitose do zigoto ou na segmentação dos blastômeros são menos frequentes.
As aneuploidias devem-se à não separação (ou não-segregação) de um (ou mais) cromossomo(s) para as células-filhas durante a meiose ou durante as mitoses do zigoto A não-segregação na mitose decorre do não-rompimento do centrômero no início da anáfase ou da perda de algum cromossomo por não ter ele se ligado ao fuso.
A não-segregação na meiose é devida à falhas na separação dos cromossomos ou das cromátides, que se separam ao acaso para um pólo ou outro. Na meiose a não-segregação tanto pode ocorrer na primeira divisão como na segunda. No primeiro caso, o gameta com o cromossomo em excesso, em lugar de ter apenas um dos cromossomos de um dado par, ou seja, terá um cromossomo paterno e um materno. No segundo, o gameta com o cromossomo em excesso terá dois cromossomos paternos ou dois maternos, por exemplo.

Quando em consequência desses processos de não-segregação falta um cromossomo de um dado par, isto é, quando o número de cromossomos da célula é 2n - 1, diz-se, que a célula apresenta monossomiapara este cromossomo. Se faltam os dois elementos do mesmo par 2n - 2, tem-se nulisomia. Se, pelo contrário, houver aumento do número de cromossomos de um determinado par, a célula serápolissômica para o cromossomo em questão; ela será trissômicatetrassômicapentassômica etc., conforme tiver 1, 2 ou 3 cromossomos a mais, sendo, nesses casos, o seu número cromossômico designado por (2n + 1), (2n + 2), (2n + 3) etc.



Aneuploidias Autossômicas

Síndrome de Down
Doença congênita caracterizada por malformações dos órgãos (coração, rins), retardamento mental de moderado a severo, língua espessa, pés e mãos de pequenas dimensões, alterações nas feições. É resultante de uma anormalidade na constituição cromossômica: os indivíduos afetados apresentam um cromossomo extra - que se acrescenta ao par de número 21 - em suas células (por esta razão a doença é também denominada trissomia do 21). O termo mongolismo é um sinônimo usual: a presença de fendas palpebrais oblíquas faz lembrar os indivíduos das raças orientais.
 
A frequência com que esta síndrome se manifesta é de uma para cada 500 crianças nascidas vivas e é superior para concepções em mulheres com idade acima de 40 anos. Esta síndrome foi descrita em 1866 pelo médico inglês John Langdon Haydon Down (1828 - 1896). A Síndrome de Down outrissomia do 21, é sem dúvida o distúrbio cromossômico mais comum e a mais comum forma de deficiência mental congênita. Geralmente pode ser diagnosticada ao nascimento ou logo depois por suas características dismórficas, que variam entre os pacientes, mas produzem um fenótipo distintivo.
Os pacientes apresentam baixa estatura e o crânio apresenta braquicefalia, com o occipital achatado. O pavilhão das orelhas é pequeno e dismórfico. A face é achatada e arredondada, os olhos mostram fendas palpebrais e exibem manchas de Brushfield ao redor da margem da íris. A boca é aberta, muitas vezes mostrando a língua sulcada e saliente. As mãos são curtas e largas, freqüentemente com uma única prega palmar transversa ("prega simiesca").


Trissomia do 13 - Patau
A trissomia do 13 é clinicamente grave e letal em quase todos os casos que sobrevivem até 6 meses de idade. O cromossomo extra provém de não-disjunção da meiose I materna e cerca de 20% dos casos resultam de uma translocação não-balanceada. O fenótipo inclui malformações graves do sistema nervoso central como arrinencefalia. Um retardamento mental acentuado está presente. Em geral há defeitos cardíacos congênitos e defeitos urigenitais. Com freqüência encontram-se fendas labial e palatina, anormalidades oculares, polidactilia, punhos cerrados e as plantas arqueadas.

Trissomia do 18-Edwards
A maioria dos pacientes apresentam com a trissomia do cromossomo 18 apresenta trissomia regular sem mosaicismo, isto é , cariótipo 47 XX ou XY+18. Entre os restantes, cerca de metade é constituída por casos de mosaicismo e outro tanto por situações mais complexas, como aneuploidias duplas, translocações.
As manifestações da trissomia do 18 sempre incluem retardamento mental e atraso do crescimento e, às vezes malformações graves no coração. O crânio é excessivamente alongado na região occipital. O pavilhão das orelhas é dismórfico, com poucos sulcos. A boca é pequena. O pescoço é curto. Há uma grande distância intermamilar. Os genitais externos são anômalos. O dedo indicador é maior do que os outros e flexionado sobre o dedo médio. Os pés têm as plantas arqueadas. As unhas costumam ser hipoplásticas.

Aberrações cromossômicas estruturais

São alterações que não modificam a quantidade de cromossomos de uma célula, mas determinam o aparecimento de cromossomos anormais. As aberrações que vamos descrever a seguir quase sempre implicam em problemas sérios, inclusive na formação de gametas. Isso porque durante a meiose, o cromossomo com a deficiência pareia de forma anômala com seu homólogo que não sofreu alteração, afetando o andamento, do processo meiótico. A gravidade das manifestações de uma deficiência depende dos genes ausentes.

Deficiência ou Deleção

Um pedaço de cromossomo é perdido neste tipo de anomalia , que implica a perda de muitos genes. Deficiências são percebidas durante o pareamento de cromossomos na meiose . Um exemplo humano é a síndrome de cri du chat (síndrome do miado do gato), em que falta um fragmento do braço curto do cromossomo 5. Caracterizada por retardo mental, microcefalia, aspecto arredondado da face, presença de dobras epicânticas nos olhos e de choro semelhante a um miado de gato.
Outro exemplo é o cromossomo 22 curto ("cromossomo Filadélfia"), associado a uma forma de leucemia.
 

Inversão
Um pedaço de cromossomo se quebra, sofre rotação de 180º e solda-se novamente em posição invertida. Por causa da alteração da ordem dos genes, o pareamento dos homólogos na meiose.


Translocação

 
Trata-se da troca de pedaços entre cromossomos não-homólogos, diferente do que ocorre no crossing-over, fenômeno normal e corriqueiro. Fala-se em translocaçào reciproca e heterozigota, em que apenas um elemento de cada par sofre a troca. Na hora do pareameto meiótico , ocorre uma figura em forma de cruz.
É possível que a translocação tenha sido um mecanismo de formação de novas espécies. Há umas hipóteses sobre algumas espécies de drosófilas, todas com um numero diferente de cromossomos, que poderiam ter se originado de uma espécie ancestral, a partir de translocações de diversos tipos.


Duplicação
Na duplicação, há a formação de um segmento adicional em um dos cromossomos. De modo geral, as consequências de uma duplicação são bem toleradas pois não há falta de material genético.



Diagnóstico pré-natal


Já é possível diagnosticar muitas doenças em bebês recém-nascidos e até mesmo na fase fetal. Caso o feto seja portador de uma grave doença genética o casal pode se preparar para criar um filho com determinada anomalia uma vez que não é permitido no Brasil o aborto por causa de anomalias no feto.

 
Amniocentese
Punção da cavidade amniótica através da parede abdominal, feita numa mulher grávida; permite a retirada de certa quantidade de líquido amniótico para fins de análise. A amniocentese precoce, praticada entre 16° e 18° semana de gestação, permite fazer o diagnóstico de anomalias fetais; também é possível detectar se a criança é portadora de mongolismo, anencefalia ou outra anormalidade genética. A amniocentese tardia, feita no terceiro trimestre da gravidez, serve para evidenciar se há sofrimento fetal crônico.

Amostragem vilo-coriônica
A amostragem vilo-coriônica permite diagnosticar doenças hereditárias entre a oitava e a décima semanas de gravidez, mais precocemente, portanto, do que a amniocentese. Com auxílio de um longo instrumento de punção, introduzido pela vagina até o interior do útero, retira-se uma pequena porção das projeções e dobras (vilosidades) da membrana que recobre o embrião, o córion. As células assim obtidas podem ser cultivadas durante algum tempo em meio nutritivo ou serem usadas diretamente para o tipo de análise que se quer fazer.
A operação de retiradas de amostras de vilosidades coriônicas provoca aborto em 1% dos casos. Por isso esse diagnóstico é empregado apenas nos casos em que o risco de o feto for afetado por doenças genéticas é muito grande, o que justifica a sua detecção precoce para um eventual aborto terapêutico (que deve ser julgado pela justiça)

Os erros inatos do metabolismo e a genética

Vamos agora, fazer uma rápida descrição de duas importantes doenças relacionadas à ação de genes “defeituosos”.
Fenilcetonúria
A fenilcetonúria (PKU) é uma doença genética devida a ação de um gene recessivo que se manifesta em homozigose, que afeta aproximadamente 1 em cada 12.000 recém-nascidos no Brasil. As pessoas com essa anomalia são incapazes de produzir uma enzima que atua na conversão de um aminoácido fenilalanina no aminoácido tirosina. Sem essa conversão a fenilalanina acumula-se no sangue e é convertida em substância tóxica que provoca lesões no sistema nervoso, culminando com retardo mental do portador. Uma dessas substâncias é o ácido fenilpirúvico, excretado pela urina, que explica o nome dado a doença. Uma criança recém-nascida, homozigota recessiva para PKU, tem início de vida saudável, uma vez que as enzimas produzidas pela mãe foram transferidas pela placenta, livrando-a do problema. No entanto, à medida que os dias passam, a enzima acaba e a fenilalanina vai se acumulando.
Na década de 1950, forma desenvolvidos testes bioquímicos para prevenir os sintomas da doença. Um simples exame de sangue (teste do pezinho) pode revelar a presença de excesso de fenilalanina. Reconhecida a existência da doença, as crianças passam a receber alimentação pobre em fenilalanina (lembre-se que a fenilalanina é importante no metabolismo de construção, uma vez que parte da estrutura de muitas proteínas). Crianças assim tratadas chegam à vida adulta normalmente e, mesmo que nessa fase se alimentem de substâncias contendo fenilalanina, já não haverá riscos, uma vez que o desenvolvimento do sistema nervoso já está finalizado.

Galactosemia
A Galactosemia é uma doença metabólica rara, de fundo genético. A deficiência de uma enzima do metabolismo da galactose não permite que esta seja transformada em glicose, principal fonte de energia do organismo. O acúmulo da galactose ou de seus metabólitos é a causa dos danos nos rins, fígado, cérebro e olhos ou até mesmo a morte em casos mais graves.
A doença pode se manifestar em crianças e neonatos com a deficiência metabólica assim que a galactose é introduzida na dieta via leite materno, leites em geral, queijos e derivados. Os sinais da doença são normalmente vômitos, aumento do fígado, pigmentação amarelada da criança, entre outros.
Os danos causados pela galactosemia podem ser menores se a doença for diagnosticada precocemente. Por isso, em muitos centros médicos a investigação da galactosemia já está sendo incluída no chamado"teste do pezinho" (ou triagem neonatal), uma medida simples que pode melhorar muito o prognóstico da doença.
O tratamento é a base de dieta severa sem galactose e sem lactose, desde o período neonatal até, na maioria dos casos, o resto da vida com monitoramento constante através da dosagem do nível de galactose e seus metabólitos nas hemácias. Com o tratamento severo desde o período neonatal, os danos que podem ter ocorrido pré-diagnóstico no fígado, serão sanados, mas a incidência de complicações ovarianas, de linguagem e fala, coordenação motora e aprendizado são altas a longo prazo.

 fonte: www.sobiologia.com.br
Síndrome de Turner (XO)

É uma monossomia na qual os indivíduos afetados exibem sexo feminino mas geralmente não possuem cromatina sexual. O exame de seu cariótipo revela comumente 45 cromossomos, sendo que do par dos cromossomos sexuais há apenas um X; dizemos que esses indivíduos são XO (xis-zero), sendo seu cariótipo representado por 45 X. Muitas dessas concepções terminam em aborto; é provável que 97% desses conceitos sejam eliminados chegando a termo apenas 3%, de modo que essa monossomia constitui uma das causas mais comuns de morte Intra-uterina. Por isso é uma anomalia cromossômica rara, atingindo apenas 1 entre 3000 mulheres normais. 
Trata-se, fundamentalmente, de mulheres com disgenesia gonadal, isto é, cujos ovários são atrofiados e desprovidos de folículos; portanto, essas mulheres não procriam, exceto em poucos casos relatados de Turner férteis, em cujos ovários certamente há alguns folículos.

Devido à deficiência de estrógenos elas não desenvolvem as características sexuais secundáriasao atingir a puberdade, sendo, portanto, identificadas facilmente pela falta desses caracteres; assim, por exemplo, elas não menstruam (isto é, têm amenorréia primária). Quando adultas apresentam geralmentebaixa estatura, não mais que 150 cm; infantilismo genital – clitóris pequeno, grandes lábios despigmentados, escassez de pêlos pubianospelve andróide, isto é, masculinizada; pele frouxa devido à escassez de tecidos subcutâneos, o que lhe dá aparência senil; unhas estreitas; tórax largo e em forma de barril; alterações cardíacas e ósseas. No recém-nascido frequentemente há edemas nas mãos e nos pés, o que leva a suspeitar da anomalia.
As primeiras observações realizadas com indivíduos severamente afetados associavam a síndrome de Turner algum grau de deficiência mental. Posteriormente ficou evidente que estas pacientes têm um desenvolvimento cognitivo alterado apenas qualitativamente, pois elas possuem uma inteligência verbal superior à das mulheres normais, compensando, assim, as suas deficiências quanto à percepção forma-espaço. Disto resulta que o nível intelectual global das Turner é igual ou, mesmo, levemente superior ao da população feminina normal. 
Por outro lado, não exibem desvios de personalidade, o que significa, inclusive, que sua identificação psicossexual não é afetada.  Em decorrência da disgenesia ovariana, a única fonte de estrógenos para essas pessoas são as supra-renais; como a taxa desses hormônios é baixa, as pacientes devem receber aplicações de estrógenos para estimular o desenvolvimento dos caracteres sexuais secundários e o aparecimento da menstruação. Usualmente esse tratamento tem início aos 16 anos para evitar que os estrógenos aplicados retardem ainda mais o crescimento.

Hermafroditismo 
O hermafroditismo é uma anomalia sexual ainda pouco conhecida, configurando um distúrbio morfológico e fisiológico das gônadas sexuais de um indivíduo, que simultaneamente manifesta estrutura tecidual testicular e ovariana.

Por análise do cariótipo é sabido que não se trata de uma síndrome genética (mono ou trissomia halossômica), relacionada aos cromossomos sexuais X ou Y. No entanto, pode estar associado a uma ocorrência de dispermia, havendo fecundação normal (espermatozóide e ovócito de segunda ordem - óvulo) e outra fecundação paralela anômola (espermatozóide e um glóbulo polar – óvulo não diferenciado, em tese, inativo). 
A tendência do hermafroditismo é o aparente aspecto externo da genitália masculina, quando coexistentes testículo e ovário. Nas demais situações, com duas ovotetis e gônada, a genitália possui aspecto feminino.

Naturalmente, os indivíduos portadores dessa anomalia somente revelam o hermafroditismo durante a puberdade, desencadeando transtornos psicossociais quando descoberto.

Dependendo do tipo anatômico aparente, o período de amadurecimento corpóreo, pode devido a estímulos hormonais, iniciar: o processo menstrual, bem como a ginecomastia (crescimento das mamas) em indivíduos criados como se fossem homens; e falha menstrual, crescimento do clitóris e surgimento de pêlos nos indivíduos criados como se fossem mulheres.



2 comentários: